Unabhängigkeitsbeweise
Der Beweis des Fundamentalsatzes ruht auf zwei Säulen. Die eine stammt von Kurt Gödel (1938), die andere von Paul Cohen (1963). Gödel hat gezeigt: (CH) ist nicht widerlegbar, d. h. die Verneinung non (CH) der Kontinuumshypothese ist nicht beweisbar. Cohen (geb. 1934) hat gezeigt: (CH) ist nicht beweisbar.
Eine (in der klassischen Mathematik) weder beweisbare noch widerlegbare Aussage nennt man unabhängig (von der klassischen Mathematik). Dass es solche unabhängigen Aussagen gibt, wusste man bereits seit den Gödelschen Unvollständigkeitssätzen (1931). Allerdings werden diese Aussagen − mit einer Diagonalmethode! − sehr abstrakt konstruiert und ihr mathematischer Gehalt ist von einem ganz anderen Typ als (CH); sie besagen „ich bin nicht beweisbar“ oder „der zugrundeliegende Rahmen ist widerspruchsfrei“. Mit dem Beweis der Unabhängigkeit von (CH) hatte man zum ersten Mal eine unabhängige Aussage in Gestalt einer üblichen mathematischen Fragestellung gefunden.
Das Folgende hat beschreibenden Charakter und muss in vielen Punkten, die bei der Ausführung der hier dargestellten Ideen eine große Rolle spielen, ungenau und skizzenhaft bleiben. So nehmen wir etwa durchgehend die Widerspruchsfreiheit der üblichen Mathematik an, die sich aufgrund der Unvollständigkeitssätze von Gödel mathematisch nicht beweisen lässt. Die offizielle, aber hier zu umständliche Formulierung wäre etwa von der Form: Ist dieses und jenes axiomatische System widerspruchsfrei, so bleibt es widerspruchsfrei, wenn wir diese oder jene Aussage als neues Axiom zu dem System mit hinzunehmen. Weiter haben wir noch keinen formalen Rahmen entwickelt, der für die saubere Formulierung derartiger Resultate nötig wäre. Und auch dann hätte man noch einmal zwischen einer formalisierten Sprache, in der wir Mathematik betreiben, und ihrem kodierten Abbild innerhalb der mathematischen Objektwelt scharf zu trennen. Derlei Unterscheidungen sind für das Funktionieren der mathematischen Untersuchung der Mathematik selbst von großer Bedeutung, und die Verwechslung von Sprachebenen ist ein zeitloser Quell der Verwirrung. Für hier genügt uns eine Beschreibung, die dem Leser ungefähr ein Gefühl gibt, wie der Unabhängigkeitshase läuft. Um die ungemein subtilen Ausweichmanöver, die er zu vollführen hat, um nicht in die überall aufgestellten Fallen der logischen Unlauterkeit zu tappen, können wir uns hier nicht kümmern.
Wie sehen die beiden Säulen aus? Zunächst ist es nötig zu definieren, was „beweisbar im üblichen Rahmen“ heißt. Wie schon im zweiten Kapitel angedeutet, kann man einen formalen Beweisbegriff definieren im Sinne von „beweisbar mit Hilfe von bestimmten Axiomen (Grundannahmen) und einem genau definierten System aus Schlussregeln (Kalkül)“. Der „normale Beweise“ führende Mathematiker muss für seine Arbeit dieses formale System aus Kalkül und Axiomen gar nicht kennen, es ist eine Art Sekretär im Hintergrund, der jederzeit in der Lage ist, handschriftliche Notizen sauber und akkurat zu tippen; und diese Tätigkeit ist für „normale Beweise“ ziemlich überflüssig.
Für einen Unabhängigkeitsbeweis ist aber die Existenz eines solchen formalen Systems unerlässlich, denn hier ist die Rede davon, dass etwas nicht beweisbar oder widerlegbar ist, kein Beweis also eine bestimmte Frage beantwortet; und hierzu muss man offenbar festlegen, was man unter einem Beweis verstehen will.
Zum Glück müssen nun auch Mathematiker, die Unabhängigkeitsbeweise führen wollen, nicht das Dasein eines akkuraten Sekretärs fristen. Wichtig ist nur, dass nach der Aufstellung eines formalen Systems der Begriff „beweisbar“ ein mathematischer Begriff geworden ist, den man verwenden darf − wie er z. B. im Fundamentalsatz verwendet wird.
Von zentraler Bedeutung für einen Unabhängigkeitsbeweis ist nun der Begriff eines Modells, den wir hier kurz skizzieren wollen, und durch den der formal denkende und dienstbeflissene Sekretär wieder in den Hintergrund rückt − wo er auch hingehört.