Historischer Überblick

Die Mengenlehre wurde im letzten Viertel des 19. Jahrhunderts von Georg Cantor entwickelt. Entgegen vorherrschenden Dogmen über den Umgang mit unendlichen, „fertigen“ Gesamtheiten, schuf er in einem gewaltigen Kraftakt die transfiniten Zahlen und das Konzept der Mächtigkeit oder Größe einer unendlichen Menge. Er entdeckte die Überabzählbarkeit der reellen Zahlen, das Kontinuumsproblem und untersuchte hinsichtlich einer Lösung des Problems die reellen Zahlen unter völlig neuartigen Gesichtspunkten.

 Allerdings zeigte sich, dass man vorsichtig im Umgang sehr großer Gesamtheiten sein musste. Georg Cantor war mit diesem Phänomen vertraut, aber er äußerte sich hierzu in seinen Veröffentlichungen nur marginal. Ernst Zermelo, Cesare Burali-Forti und Bertrand Russell fanden um die Jahrhundertwende Widersprüche der uneingeschränkten Mengenbildung:

„Zu jeder Eigenschaft existiert die Menge aller Objekte,

auf die diese Eigenschaft zutrifft.“

Dieses sogenannte naive Komprehensionsprinzip ist nicht haltbar. Nun riefen aber nicht die mathematischen Ideen Cantors, die er mit sicherer innerer Anschauung entwickelt hatte, die Unstimmigkeiten hervor, sondern verantwortlich hierfür war allein der unreflektierte Rahmen, in welchem die Mengenlehre damals stattfand. David Hilbert rief eine genauere Untersuchung der Grundlagen der Mathematik ins Leben.

 Ernst Zermelo löste 1908 das Problem axiomatisch durch die Angabe eines Systems, das sorgfältig die Existenz bestimmter Mengen und die Bildung von Mengen aus anderen Mengen beschreibt. In der Folge wurde diese Axiomatik von Ernst Zermelo noch um zwei Axiome ergänzt, das Ersetzungsschema von Abraham Fraenkel (1922) und das Fundierungsaxiom von John von Neumann (1925) und Ernst Zermelo (1930). Weiter wurde die verwendete Sprache präzisiert, in der die Axiome formuliert werden und die den Begriff der „Eigenschaft“ einer Menge festlegt (Thoralf Skolem 1922). Das entstehende System aus Sprache und Axiomen, die Zermelo-Fraenkel-Axiomatik ZFC, wird heute zumeist als Rahmen für die Mengenlehre verwendet. Die Widersprüche verschwinden in diesem System in natürlicher Weise, und alle Ideen Cantors leben darin in ihrer ursprünglichen Schönheit fort.

 Es zeigte sich, dass der neue Rahmen der axiomatischen Mengenlehre groß genug war, um alle Objekte der Mathematik − Zahlen aller Art, Funktionen, geometrische Gebilde usw. − darin interpretieren zu können, d. h. es existiert eine auf dem Mengenbegriff basierende Definition dieser Begriffe, die alle erwünschten und in der Mathematik benötigten Eigenschaften der Objekte bereitstellt. Die Mengenlehre eignet sich damit als Grundlagendisziplin für die Mathematik selbst, und sie ist in ihrer universellen Fähigkeit zur Interpretation mathematischer Konstrukte bislang konkurrenzlos.

 Ungelöst blieb allerdings Cantors Kontinuumsproblem, das die Frage stellt, ob die reellen Zahlen in der Hierarchie der Mächtigkeiten unmittelbar nach den natürlichen Zahlen erscheinen. Cantor sah lange Zeit zuversichtlich einer Lösung entgegen, scheiterte aber an diesem Problem, das dann David Hilbert auf dem Mathematikerkongreß in Paris 1900 an die erste Stelle seiner berühmten Liste von 23 offenen Fragen für das kommende neue Jahrhundert setzte. Schließlich „lösten“ Kurt Gödel (1938) und Paul Cohen (1963) das Problem, indem sie zeigten, dass es unlösbar war. Die Beweismethoden von Gödel und Cohen waren allgemein genug, um eine Fülle von ähnlichen Resultaten folgen zu lassen. Das Phantom der Unbeweisbarkeit oder Unabhängigkeit von mathematischen Aussagen war, nachdem Gödel seine Existenz bereits in den dreißiger Jahren abstrakt bewiesen hatte, real und greifbar geworden.

 Mit der Entdeckung der Unabhängigkeit der Kontinuumshypothese beginnt die zweite Phase der Geschichte der Mengenlehre, in der Erweiterungen der ZFC-Axiomatik um sogenannte große Kardinalzahlaxiome ein Zentrum des Interesses bilden − und in der zuletzt auch neue Einsichten in das Kontinuumsproblem gewonnen werden konnten, wenn auch eine Entscheidung über die Größe der reellen Zahlen immer noch nicht gefallen ist. Wir werden im zweiten Band einige Aspekte dieser zweiten Phase der Mengenlehre skizzieren.

 Heute ist die Mengenlehre nicht nur Rahmen für die Mathematik, sondern selbst eine schillernde mathematische Theorie. Sie fasziniert nach wie vor durch die stille Schönheit ihrer ersten Konzepte und durch deren erstaunliche und anscheinend noch bei weitem nicht ausgelotete Reichweite und Tragfähigkeit. Ihre Verzweigungen sind vielfältig und subtil miteinander verwoben, ihre Geschichte ist bis in die allerjüngste Zeit voll von Überraschungen und reich an dramatischen Entwicklungen. „The old lady“ (Saharon Shelah) hat, kurz gesagt, alles, was man von einer großen mathematischen Theorie verlangen darf.