Einführung

Die reellen Zahlen sind, so die heute vorherrschenden Reflexe, geometrisch die nadelfeinen Punkte einer Linie, die Atome eines Kontinuums, und daneben arithmetische Ungetüme aus Nachkommastellen mit klar erkennbarem bis völlig zufälligem Verlauf. Sie verputzen den linear-arithmetischen Rohbau der rationalen Zahlen und versiegeln dessen poröse Struktur. Sie sind derjenige Schritt über die rationalen Zahlen hinaus, der die Analysis möglich macht. Achill erreicht die Schildkröte.

 Das funktioniert bei suggestiver Notation auch ohne definitorische Präzisierung so gut, dass die Mathematik knapp zwei Jahrhunderte braucht, das physikalisch-notationelle Erbe von Newton und Leibniz auszuloten, es „auszurechnen“ − um dann zu erkennen, dass die Analysis, eine der geistigen Pyramiden der Neuzeit, keineswegs auf einem ihr gemäßen soliden Fundament steht. Die Mathematik befindet sich am Ende des 19. Jahrhunderts durch die am Begriff der „Teilmenge von “ emporgewachsene Mengenlehre Georg Cantors vor einer semantischen wie grammatikalischen Umwälzung und erlebt ein Beben, dessen Wellen erst Jahrzehnte später an der Küste der Moderne auslaufen. Sie wird neugeschrieben nicht auf dem sicheren Boden des Finiten und Fassbaren, sondern schafft sich, auf den Schultern von Cantor und Dedekind, die Weiten der Unendlichkeit, in denen sie ihre neuempfundene Identität frei entfaltet. Im letzten Jahrzehnt des 19. und in den ersten drei Jahrzehnten des 20. Jahrhunderts arbeiten Mathematiker wie Giuseppe Peano, David Hilbert, Felix Hausdorff, Emile Borel, Ernst Zermelo, Renè Baire, Henri Lebesgue, Felix Bernstein, Luitzen Brouwer, Nikolai Lusin, Stefan Banach und John von Neumann ebenso an Grundlagenfragen wie an den darüber liegenden mathematischen Gegenständen − eine ab der nächsten Generation kaum mehr erreichte Synthese. Die Expeditionen stoßen auf die großen Fragen nach der Beschaffenheit des Denkens selber, nach dem Wesen des geistig-unendlichen Kosmos. Im Zentrum steht hier Kurt Gödel und die aus dem Dornröschenschlaf erwachte mathematische Logik.

 Will man den grandiosen Erfolg der Analysis und genauer den spielfreien Lauf der Schneckenräder eines Kalküls exemplarisch beschreiben, so bietet sich eine Episode der Himmelsmechanik an: Der Ruhm von Gauß wurde interdisziplinär und international, als im Jahre 1801 seine auf dünnem Datenbestand beruhenden Berechnungen den verlorenen Asteroiden Ceres wiederauffindbar machten. Dass dieser doch recht kleine Fund sogleich bis zur politischen Ebene gewürdigt wurde und anekdotischen Charakter annahm, ist keineswegs zufällig. Es handelt sich um ein symbolfähiges Ereignis des wissenschaftlichen Welterlebens. Die Macht des Geistes führt die Naturbeobachtung auf ein höheres Niveau, kombiniert mit dem Motiv des Wiederfindens des Verlorenen. Wir stehen vor einer aufklärerischen Verbindung von Natur und Geist.

 „Natur und Geist − so spricht man nicht zu Christen. Deshalb verbrennt man Atheisten, weil solche Reden höchst gefährlich sind. Natur ist Sünde, Geist ist Teufel, sie hegen zwischen sich den Zweifel, ihr missgestaltet Zwitterkind“ − dieser Wutausbruch des Kanzlers im Faust beschreibt, was kommen musste: Der Zweifel, die neugierig-forschende und grüblerisch-insistierende Untersuchung des dem analytischen Rechnen zugrunde liegenden Fundaments, der Menge der reellen Zahlen. Der äußere Erfolg und innere Reichtum der klassischen Analysis hat diese Untersuchung sowohl verzögert als auch erst ermöglicht. Parallel zur Weiterentwicklung des analytischen Rechnens durchgeführt, brachte die Suche nach den letzten Dingen über reelle Zahlen in den letzten eineinhalb Jahrhunderten ein Atlasgebirge an Struktur hervor, und seine davor liegenden sonnigen Hügellandschaften und ersten windigen Berge bilden den Stoff, aus dem dieser Text ist. Müsste man hier ein symbolisches Einzelstück nennen, so wäre es die Überabzählbarkeit der reellen Zahlen, die Cantor im Winter des Jahres 1873 entdeckte: Es gibt keine Folge x0, x1, x2, …, xn, …, die alle reellen Zahlen durchläuft; es gibt in einem präzisen mathematischen Sinn mehr reelle Zahlen als natürliche Zahlen. Eine Erkenntnis, die mit dem Wiederauffinden von Ceres gut mithalten kann! Dass dann weiter die Frage des Cantorschen Kontinuumsproblems, wie viele reelle Zahlen es denn gebe, nachweislich eine sinnvolle Frage ohne Antwort innerhalb der klassischen Mathematik ist, diese durch die Sätze von Gödel 1938 und Paul Cohen 1963 mit metamathematischen Methoden aufgezeigte Lücke der Erkenntnis ist der große doppelte Einschlag im 20. Jahrhundert in den Planeten der reellen Zahlen, der fast daran zerbrochen wäre und seither eine schräggestellte Achse aufweist. Wie groß die reellen Zahlen sind, hängt vom mathematischen Hintergrunduniversum so ab wie die Natur von den Jahreszeiten. Andere mathematische Welten können andere reelle Zahlen haben, bei identischer Definition derselben. Die zweite mathematische Grundstruktur als relativ anzuerkennen ist für alle Mathematiker schwer und für manche unmöglich. Die Diskussion über die beste Interpretation dieser Relativität hält bis heute an.

 Die vom Kontinuumsproblem geleitete Untersuchung der reellen Zahlen wählte nach einem längeren Prozess die mit  untrennbar verbundene Potenzmenge der natürlichen Zahlen zu ihrem Hauptgegenstand, und führte von der analytischen „analogen“ Sicht zu einem „digitalen“ Ansatz, bei dem die reellen Zahlen nicht mehr als ein Kontinuum verstanden werden, sondern als das Reich der unendlichen ideellen Information. Eine reelle Zahl erscheint nun als unendliche Folge, gebildet aus zu diskreten Zeitpunkten eintreffenden diskreten Fragmenten. Reelle Zahlen kodieren und beschreiben in dieser Weise unendliche Strukturen, und vereinigen sich dann zu Mengen verschiedenster Komplexität.

 Die Kontinuitätsidee verschwindet bei diesem Ansatz gänzlich. Als strukturstiftende topologische Grundlage dient die Ähnlichkeit zweier Informationen, die durch die Identität der jeweils eintreffenden Fragmente über einen längeren Zeitraum beschrieben wird, und nicht durch ein räumliches Beieinander im klassischen Sinn. Der Leser vergleiche dies mit dem kontinuierlichen Bild der reellen Zahlen, wo 0,1000… und 0,0999… identisch sind, obwohl sich bereits die zweiten Nachkommastellen, d. h. die an zweiter Stelle gefundenen Fragmente der Gesamtinformationen, unterscheiden. Eine genauere Untersuchung dieser zufällig erscheinenden notationellen Kollision zeigt, dass das Phänomen ein unvermeidliches, genuin analytisches ist. Wir kommen vor allem im dritten Kapitel darauf noch zurück. Ein Verständnis dessen, was hier vor sich geht, erfordert ein ganzes Stück Mathematik. Im digitalen Weltbild liegen zwei unendliche Informationen, die sich durch die eintreffenden Fragmente 0, 1 bzw. 0, 0 zu konkretisieren beginnen, notwendig weit auseinander: Kein möglicher weiterer Verlauf der Fragmente führt zum gleichen Objekt. Die Erkenntnis der Verschiedenheit zweier Objekte wird in analytischen Darstellungen in gewissen Fällen unendlich lange verzögert, und dies ist für gewisse Belange der grundlagentheoretischen Untersuchung so störend, dass die untersuchten Objekte von vornherein anders strukturiert werden. Die digitale Optik trennt die Doppelsterne des analytischen Raumes und führt dadurch zu einer diskontinuierlichen, aber in vielerlei Hinsicht klareren Theorie. Durch das relativ seltene Auftreten der analytischen Kollision sind Übersetzungen zwischen der digitalen und der analogen Welt oft gut möglich, erscheinen aber, nachdem man sich an den Gedanken gewöhnt hat, andere Begriffe von „reelle Zahl“ gleichberechtigt zuzulassen, als nicht unbedingt nötig.

 In diesem Buch werden drei Mengen − samt der sie begleitenden topologischen, linearen und arithmetischen Strukturen − als „reelle Zahlen“ bezeichnet:

(i)

Die Menge  der klassischen reellen Zahlen, das Kontinuum.

(ii)

Die Menge 𝒩 aller Folgen von natürlichen Zahlen, der sog. Baireraum.

(iii)

Die Menge () aller Teilmengen der natürlichen Zahlen, die wir mit dem Raum 𝒞 aller unendlichen 0-1-wertigen Folgen identifizieren können, dem sog. Cantorraum.

 All dieses wird zu motivieren und zu besprechen sein. Im ersten Abschnitt arbeiten wir durchgehend mit dem Kontinuum , danach stehen der Baireraum und der Cantorraum im Mittelpunkt, wobei viele Ergebnisse auch für das Kontinuum mitbewiesen werden oder sich übertragen lassen.